
THE FORTY FIRST W.J. BLUNDON MATHEMATICS CONTEST

Sponsored by
The Canadian Mathematical Society *
in cooperation with
The Department of Mathematics and Statistics
Memorial University of Newfoundland

February 26, 2025

1. Find the area of a rhombus with a side length 10 units and the shortest diagonal 12 units.

2. Consider the number consisting of 60 digits

101112131415161718192021222324252627282930313233343536373839 What is the biggest 6-digit number that can be obtained by erasing 54 digits of your choice? Note: remaining digits should be in the same order as in the original number.

- 3. A closed plastic rectangular box is partially filled with $160 m^3$ of water. The depth of the water is either 2 m or 4 m or 5 m, depending on which face of the box is on the ground. What is the volume of the box?
- 4. Three different numbers are chosen at random from the set $\{1, 2, 3, \dots, 9\}$. What is the probability that one of them is the average of the other two?
- 5. (a) Find the integer part of the number $\sqrt{42 + \sqrt{42 + \sqrt{44 + + \sqrt{44 + + \sqrt{44 + \sqrt{$
 - (b) Find the integer part of the number $\sqrt{a + \sqrt{a + \sqrt{a + \sqrt{a + \sqrt{a}}}}}$,

where a = n(n+1) for some positive integer number n. Explain your result.

- 6. (a) What is the smallest angle that is formed by the hour and the minute hands at 5:00?
 - (b) What is the smallest angle that is formed by the hour and the minute hands at 11:10?
 - (c) What is the first time after 1:00 when the two hands form an angle of 80 deg?
 - (d) How many times during any 24 hour period do the minute hand and the hour hand form an angle of 90 degrees?
- 7. Find all values (if any) of the parameter a for which the equation 10 |x| = ax has
 - a) exactly one root, which is a positive number. Express this root in terms of a.
 - b) exactly two distinct roots. Express these roots in terms of a.
 - c) no roots.
- 8. The 5×5 square is filled with numbers in such a way that each row and each column contains the numbers 1, 2, 3, 4 and 5 exactly once.

The sum of the numbers in each of the three areas marked with either & or # or \$ is equal.

&	&	&	#	#
&	&	#	#	#
&	#	#	#	\$
#	#	#	\$	\$
#	#	\$	\$	\$

If the number in the upper left corner is 3, what are the other numbers (b, c, d, and e) on the diagonal of the square?

3				
	b			
		c		
			d	
				e

- 9. Five distinct points A, B, C, D, E lie on the same circle in this order. Let angle $\angle CAD = \alpha$. Find the sum of the angles $\angle ABC$ and $\angle AED$ in terms of α .
- 10. Do there exist positive integers A > 0 and B > 0 such that both $A^2 + B$ and $B^2 + A$ are perfect squares?